SUPPRESSION BY PHOSPHOLIPASE A₂ INHIBITORS OF SECRETION OF CATECHOLAMINES FROM ISOLATED ADRENAL MEDULLARY CELLS BY SUPPRESSION OF CELLULAR CALCIUM UPTAKE

AKIHIKO WADA,* SEISHI SAKURAI, HIDEYUKI KOBAYASHI, NOBUYUKI YANAGIHARA AND FUTOSHI IZUMI

Department of Pharmacology, University of Occupational and Environmental Health, School of Medicine, 1-1, Iseigaoka, Yahatanishiku, Kitakyushu 807, Fukuoka, Japan

(Received 20 August 1982; accepted 25 October 1982)

Abstract—The involvement of phospholipase A_2 in the secretion of catecholamines and cellular uptake of $^{45}\text{Ca}^{2+}$ was investigated in isolated bovine adrenal medullary cells. In these cells, stimulation of cholinergic receptors by carbamylcholine causes the activation of receptor-linked Ca-channels and influx of Ca^{2+} is known to trigger the secretory process. Phospholipase A_2 inhibitors, such as quinacrine, chloroquine, quinine and p-bromophenacyl bromide, all inhibited the secretion of catecholamines evoked by carbamylcholine in a dose-dependent manner. These phospholipase A_2 inhibitors also inhibited the cellular uptake of $^{45}\text{Ca}^{2+}$ evoked by carbamylcholine with similar dose-response curves to those for inhibition of catecholamine secretion. The inhibition by phospholipase A_2 inhibitors was found to be distinct from inhibition by d-tubocurarine which competitively blocks acetylcholine receptors, and from inhibition by diltiazem which acts as a Ca-antagonist at Ca-channels. Phospholipase A_2 inhibitors seem to suppress the secretion of catecholamines by interfering with the linkage between acetylcholine receptors and Ca-channels by the membrane effects including the inhibition of endogenous phospholipase A_2 activity of the adrenal medullary cells.

Stimulation of the acetylcholine receptor of adrenal medullary cells causes a rapid and prominent uptake of Ca²⁺ by the cells which is the prerequisite for catecholamine secretion: stimulus-secretion coupling [1]. In these cells, acetylcholine has been shown to alter the metabolism of membrane phospholipids during stimulus-secretion coupling, and to increase the ³²P incorporation into membrane phospholipids [2, 3] and the release of prostaglandin from the cells [4]. However, the causal relation between the metabolism of membrane phospholipid and the secretion of catecholamines has not been fully understood. It is also very important to know how neurotransmitter-receptor interaction initiates the cellular uptake of Ca^{2±} which leads to the secretion of catecholamines.

Recently, it has been shown that activation of cellular phospholipase A_2 [EC 3.1.1.4] is a critical step in the initiation of Ca^{2-} -dependent cell functions [5–7]. Receptor-mediated activation of phospholipase A_2 has been shown to be involved in the acceleration of the deacylation–reacylation cycle of membrane phospholipids leading to the alteration of phospholipid turnover and compositions [8, 9] and the release of arachidonic acid and subsequent formation of prostaglandins [4, 10, 11]. Conversely, drugs with phospholipase A_2 inhibiting properties, e.g. quinacrine, propranolol and local anesthetics, have been shown to inhibit agonist-induced cellular responses [12, 13].

In this paper, in an attempt to clarify the involvement of phospholipase A_2 in the secretion of adrenal catecholamines, we investigate the effect of quinacrine, chloroquine, quinine and p-bromophenacyl bromide on carbamylcholine-evoked secretion of catecholamines and cellular uptake of Ca^{2+} in isolated bovine adrenal medullary cells, since these compounds have been reported to be phospholipase A_2 inhibitors.

MATERIALS AND METHODS

Cell preparation. Fresh bovine adrenal glands from a local slaughterhouse were used throughout. Adrenal medullary cells were isolated by stepwise collagenase digestion of adrenal medullary slices as reported previously [14]. Isolated cells were suspended in Krebs-Ringer phosphate (KRP)† buffer (NaCl 154 mM, KCl 5.6 mM, CaCl₂ 2.2 mM, MgCl₂ 1.1 mM, glucose 10 mM and NaH₂PO₄ 0.85 mM-Na₂HPO₄ 2.15 mM, pH 7.4) containing 0.5% BSA and used in the experiments on catecholamine secretion and ⁴⁵Ca²⁺ uptake.

Catecholamine secretion. Secretion of catecholamines was started by the addition of a cell suspension (10⁶ cells in 0.5 ml of KRP) to 1.5 ml of preheated KRP (37°, 5 min) which contained carbamylcholine as stimulant or other test compounds. Incubation was carried out for 1 min and terminated by transferring the incubation tube to an ice-cold bath and 5 min later cells were sedimented by centrifugation at 600 g for 5 min. Catecholamines secreted into the medium were estimated by the ethylenediamine condensation method after con-

^{*} All correspondence should be addressed to this author.

[†] Abbreviations: KRP, Krebs–Ringer phosphate; BSA, bovine serum albumin; IC_{50} , half-maximal inhibitory conen.

1176 A. WADA *et al.*

densation by aluminium hydroxide adsorption [15]. $^{48}Ca^{2+}$ uptake. For measurement of cellular uptake of Ca²⁺, 1.5 ml of KRP containing 1.5 μ Ci of 45 CaCl₂, 3×10^{-4} M carbamylcholine and 0.5% BSA was preheated at 37° for 5 min, and then cells (4 \times 10° cells in 0.5 ml of KRP) were added to the medium and incubated for 1 min. The reaction was terminated by the addition of hexamethonium (final concn 10^{-3} M) and transferring the tubes into an ice-cold bath. Cells were sedimented by centrifugation and washed 4 times with 5 ml of ice-cold Ca²⁺-free KRP containing 0.5% BSA. Cells were finally solubilized in 10% Triton X-100 and 45 Ca²⁺ radioactivity was measured by a liquid scintillation counter with an efficiency of 78%.

Materials. Carbamylcholine and chloroquine were from Sigma. Quinacrine, quinine and hexamethonium were from Nakarai Chemical Co. Ltd, Japan. p-Bromophenacyl bromide was from Aldrich. Diltiazem was from Tanabe Seiyaku Co. Ltd, Japan. ⁴⁵CaCl₂ (0.8 Ci/mmole) was purchased from Amersham International Ltd. All the chemicals were dissolved in water except p-bromophenacyl bromide which was insoluble in water and dissolved in dimethylsulfoxide. The final concn of the vehicle in the reaction mixture was always less than 0.5% and this concn of dimethylsulfoxide did not affect the secretion of catecholamines and the uptake of ⁴⁵Ca²⁺ by itself.

RESULTS

The spontaneous secretion of catecholamines during the 1-min incubation period was less than 1% of

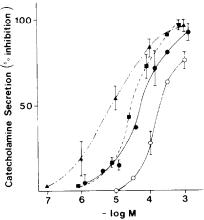


Fig. 1. Effect of phospholipase A2 inhibitors on carbamylcholine-induced secretion of catecholamines from isolated adrenal medullary cells. Cells (106 cells/tube) were incubated in 2 ml of KRP buffer (NaCl 154 mM, KCl 5.6 mM, CaCl₂ 2.2 mM, MgCl₂ 1.1 mM, glucose 10 mM, and NaH₂PO₄ 0.85 mM-Na₂HPO₄ 2.15 mM, pH 7.4) containing 0.5% BSA and stimulated for 1 min by carbamylcholine $(3 \times 10^{-4} \,\mathrm{M})$ with or without phospholipase A_2 inhibitors. Catecholamines secreted into the medium during 1 min of stimulation were estimated. Data show the dose-response curves for suppression by various phospholipase A₂ inhibitors of carbamylcholine-induced catecholamine secretion. Abscissa represents concus of phospholipase A_2 inhibitors. (\blacktriangle —— \blacktriangle) Quinacrine, (\bullet chloroquine, (\blacksquare ---- \blacksquare) quinine, (\bigcirc — \bigcirc) p-bromophenacyl bromide. The data are means \pm S.D. from four to six separate experiments.

the total catecholamines in the cells. Stimulation with carbamylcholine caused a rapid secretion of catecholamines which was transient and levelled off within 1 min. The half-maximal concn of carbamylcholine for secretion of catecholamines was $3.3 \times 10^{-5} \,\mathrm{M}$ and the maximal concn was $3 \times 10^{-4} \,\mathrm{M}$. Under the maximal conditions, $6.6 \pm 0.5\%$ of catecholamines in the cells were secreted into the medium. The phospholipase A_2 inhibitors, quinacrine, chloroquine, quinine and p-bromophenacyl bromide, all inhibited the secretion of catecholamines evoked by carbamylcholine in dose-dependent manners (Fig. 1). The inhibitory effects of quinacrine, chloroquine and quinine were reversible

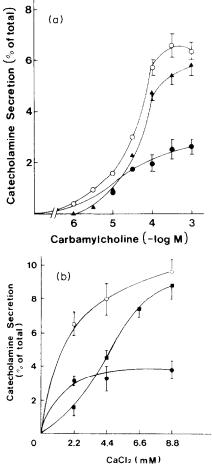


Fig. 2. Inhibition of carbamylcholine-induced catecholamine secretion by phospholipase A2 inhibitors under various concns of carbamylcholine and Ca2+. (a) Cells (106 cells/tube) were stimulated by various concns of carbamylcholine for 1 min and the inhibitory effects of d-tubocurarine $(7 \times 10^{-7} \,\mathrm{M})$ and quinacrine $(10^{-5} \,\mathrm{M})$ were measured. Control (\bigcirc) , d-tubocurarine (\blacktriangle) , quinacrine (\spadesuit) . The data are means \pm S.D. from three to seven separate experiments. (b) Cells (106 cells/tube) were stimulated by carbamylcholine $(3 \times 10^{-4} \text{ M})$ for 1 min under various concns of Ca^{2+} and the effect of diltiazem $(3 \times 10^{-6} \,\mathrm{M})$ and quinacrine (10⁻⁵ M) were examined. Control (\bigcirc), diltiazem (\blacksquare) , quinacrine (\bullet) . The data are means \pm S.D. from three to four separate experiments. Catecholamines secreted into the medium were expressed as % of total catecholamines in the cells.

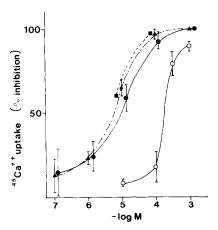


Fig. 3. Effect of phospholipase A₂ inhibitors on carbamylcholine-induced 45Ca2+ uptake by isolated adrenal medullary cells. Cells (4 × 106 cells/tube) were incubated with ${}^{45}\text{CaCl}_2$ (1.5 μCi , 3.3 × 10⁶ cpm) in 2 ml of KRP buffer (pH 7.4) containing 0.5% BSA and stimulated for 1 min by carbamylcholine $(3 \times 10^{-4} \,\mathrm{M})$ with or without phospholipase A2 inhibitors. The cells were washed 4 times with Ca²⁺-free KRP buffer containing 0.5% BSA and ⁴⁵CaCl₂ in the cells was extracted and counted by a liquid scintillation counter. Data show the dose-response curves for suppression by various phospholipase \hat{A}_2 inhibitors of carbamylcholine-induced $^{45}Ca^{2+}$ uptake. $^{45}Ca^{2+}$ uptake in control experiments was $4460 \pm 1710 \text{ cpm/}$ 4 × 106 cells. Abscissa represent concns of phospholipase A_2 inhibitors. (\blacktriangle —— \blacktriangle) Quinacrine, (\blacksquare oquine, (\blacksquare ---- \blacksquare) quinine, (\bigcirc — \bigcirc) p-bromophenacyl bromide. The data are means \pm S.D. from four separate experiments.

while that of p-bromophenacyl bromide was irreversible (data not shown). These compounds were not cytotoxic at the conens used.

Secretion of adrenal catecholamines has been reported to be inhibited by d-tubocurarine and diltiazem, the former by direct competition at cholinergic receptor sites and the latter by direct antagonism of Ca²⁺-channels [16, 17]. In order to clarify the mode by which phospholipase A2 inhibitors suppressed carbamylcholine-evoked secretion of catecholamines, we examined whether the increase in concns of carbamylcholine or Ca2+ in the medium could overcome the inhibitory effects of these compounds. Inhibition of catecholamine secretion by quinacrine was not restored either by the increase in carbamylcholine or Ca2+ concns, although inhibition by d-tubocurarine was restored by the increase in carbamylcholine concn and that by diltiazem was overcome by the increase in Ca2+ concn (Fig. 2a and b). Similar results were obtained for the inhibitory effects of chloroquine and quinine. These observations indicate that the inhibitory effect of phospholipase A₂ inhibitors was not due either to the competition at cholinergic receptors or to the antagonism of Ca²⁺-channels.

In stimulus-secretion coupling, cellular uptake of Ca²⁺ has been shown to be the critical step in triggerring catecholamine secretion. Accordingly, carbamylcholine, nicotine, high K⁺ medium and Ca²⁺ ionophore A 23187 cause the secretion of catechol-

amines by promoting the cellular uptake of Ca^{2+} [1, 18, 19]. Therefore, it is very important to investigate whether phospholipase A_2 inhibitors alter the cellular uptake of Ca^{2+} . Carbamylcholine (3 × 10⁻⁴ M) induced a rapid uptake of $^{45}Ca^{2+}$ which showed a similar time course to that of catecholamine secretion. The phospholipase A_2 inhibitors, quinacrine, chloroquine, quinine and p-bromophenacyl bromide, all inhibited carbamylcholine-induced uptake of $^{45}Ca^{2+}$ in dose-dependent manners (Fig. 3). The IC₅₀ of these compounds to the inhibition of cellular $^{45}Ca^{2+}$ uptake were close to that of catecholamine secretion.

DISCUSSION

Recently, evidence has been presented that acceleration of membrane phospholipid metabolism by phospholipase A_2 alters the physicochemical properties of the membranes and is involved in the manifestation of a variety of cell functions such as membrane fusion [20], increased ion permeability [21] and coupling of β -adrenergic receptor with adenyl cyclase [22]. The secretion of adrenal catecholamines has been shown to occur by exocytosis and fusion of chromaffin granules with plasma membranes is the most critical step in exocytosis [23, 24]. In this paper, we examined the role of phospholipase A_2 in the secretion of catecholamines from isolated adrenal medullary cells.

It has been well established that influx of Ca²⁺ into the cells is of the greatest importance in triggerring the secretion of adrenal catecholamines [1, 18, 19, 23]. In our present experiments, phospholipase A₂ inhibitors such as quinacrine, chloroquine, quinine and p-bromophenacyl bromide suppressed the secretion of catecholamines with simultaneous inhibition of cellular uptake of Ca²⁺. These findings strongly indicate that inhibition of catecholamine secretion by these compounds has resulted from inhibition of cellular uptake of Ca²⁺. We also demonstrated that those compounds had inhibited the secretion of catecholamine by a mechanism which is distinct from competition at receptor sites or direct antagonism of Ca2+-channels. Therefore, in adrenal medullary cells, it will be postulated that receptormediated activation of phospholipase A2 could alter the phospholipid turnover which, in turn, might lead to the increase in cellular Ca²⁺ availability. The signal generated from receptor stimulation seems to be transduced to putative Ca2+-channels only when metabolism of membrane phospholipids accelerated.

However, it is very important to distinguish whether these compounds have inhibited the uptake of Ca^{2+} via the inhibition of phospholipase A_2 or by a mechanism which is unrelated to phospholipase A_2 inhibition. Recently, quinacrine has been shown to modify phospholipid metabolism by an action unrelated to the phospholipase A_2 inhibition and it also has calmodulin antagonistic properties [25, 26]. Therefore, for the interpretation of the effects of so-called phospholipase A_2 inhibitors, caution should be exercised concerning how they actually modify the phospholipid metabolism of the cells, and such work is under progress in this laboratory.

1178 A. Wada *et al.*

Acknowledgements—We would like to thank Yumiko Toyohira and Keiko Take for their expert technical assistance.

REFERENCES

- 1. W. W. Douglas and A. M. Poisner, *J. Physiol.*, *Lond.* **162**, 385 (1962).
- M. R. Hokin, B. G. Benfey and L. E. Hokin, J. biol. Chem. 233, 814 (1958).
- S. K. Fisher, R. E. Holz and B. W. Agranoff, J. Neurochem. 37, 491 (1981).
- P. W. Ramwell, J. E. Shaw, W. W. Douglas and A. M. Poisner, *Nature, Lond.* 210, 273 (1966).
- S. G. Laychock, R. C. Franson, W. B. Weglicki and R. P. Rubin, *Biochem. J.* 164, 753 (1977).
- 6. M. Waite, L. R. DeChatelet, L. King and P. S. Shirley, Biochem. biophys. Res. Commun. 90, 984 (1979).
- R. W. Walenga, E. E. Opas and M. B. Feinstein, *J. biol. Chem.* 256, 12523 (1981).
- 8. M. P. Schrey and R. P. Rubin, J. biol. Chem. 254, 11234 (1979).
- R. P. Rubin, L. E. Sink, M. P. Schrey, A. R. Day, C. S. Liao and R. J. Freer, *Biochem. biophys. Res. Commun.* 90, 1364 (1979).
- 10. R. J. Flower and G. J. Blackwell, *Biochem. Pharmac.* **25**, 285 (1976).
- T. K. Bills, J. B. Smith and M. J. Silver, B.B.A. 424, 303 (1976).

- A. M. Givey, Y. Morita, F. T. Crews, F. Hirata, J. Axelrod and R. P. Sigaranian, Archs Biochem. Biophys. 212, 572 (1981).
- J. Y. Vanderhoek and M. B. Feinstein, *Molec. Pharmac.* 16, 171 (1979).
- N. Yanagihara, M. Isosaki, T. Ohuchi and M. Oka, FEBS Lett. 105, 296 (1979).
- 15. H. Weil-Malherbe. Biochem. J. 51, 311 (1952).
- C. M. Amy and N. Kirshner, J. Neurochem. 36, 847 (1981).
- A. Wada, N. Yanagihara, F. Izumi, S. Sakurai and H. Kobayashi, J. Neurochem. 40, 481 (1983).
- M. Chalfie, D. Hoadley, S. Pastan and R. L. Perlman, J. Neurochem. 27, 1405 (1976).
- D. L. Kilpatrick, R. J. Slepetis, J. J. Corcoran and N. Kirshner, J. Neurochem. 38, 427 (1982).
- D. Allan and R. H. Michell, in Secretory Mechanisms; Symposia of the Society for Experimental Biology (Eds. C. R. Hopkins and C. J. Duncan), p. 323. Cambridge University Press, London (1979).
- D. B. P. Goodman, M. Wong and H. Rasmussen. *Biochemistry* 14, 2803 (1975).
- P. Mallorga, J. F. Tallman, R. C. Henneberry, F. Hirata, W. T. Strittmatter and J. Axelrod, *Proc. natn. Acad. Sci. U.S.A.* 77, 1341 (1980).
- 23. W. W. Douglas, Biochem. Soc. Symp. 39, 1 (1974).
- O. H. Viveros, L. Arqueros and N. Kirshner, *Science* 165, 911 (1969).
- C. A. Dise, J. W. Burch and D. B. P. Goodman, J. biol. Chem. 257, 4701 (1982).
- B. Weiss, W. C. Prozialeck and T. L. Wallace. Biochem. Pharmac. 31, 2217 (1982).